Saudi Arabia Opening UpÂ
In the Middle East activity is mainly focused in Saudi Arabia, where SABIC, which has just started up a rubber factory, is considering a petrochemicals project with Saudi Aramco that would convert crude oil directly into chemicals without manufacturing naphtha. The Saudi kingdom is also opening up to foreign companies: the first to acquire a trading license was Dow, which is exploring opportunities across a range of industries. Also expected to flourish is Iran–though this depends on whether the lifting of sanctions is definitive. In October 2016 Shell signed an MOU with the country’s National Petrochemical to work on joint projects. Indeed, the country is seeking foreign investment to build 25 petrochemical plants. Algeria announced tenders for four petrochemical plants and had received 49 offers from international firms by February 2018.Â
IKEA’s Focus on RenewablesÂ
Breakthroughs in chemical technology have the potential to transform the way we generate energy and make things. Among the most interesting recent developments are (1) bio-based chemicals, (2) energy reduction in chemical processing and (3) breakthroughs in catalysis technology.Â
Bio-based chemicals use organic material, rather than crude oil or oil derivatives, as feedstock. For example, the BASF Avantium partnership produces furandicarboxylic acid (FDCA) from fructose; from it is derived a new polymer, polyethylenefuranoate (PEF), used in bottles and home care products. The University of Bath is investigating biochemicals such as pinene, a waste product from papermaking derived from pine trees, which could replace caprolactone; and limonene, from citrus fruit, which could replace petrochemicals to make plastics or pharmaceuticals.Â
Bio-based chemicals are getting a big boost from the likes of Lego and IKEA, which wants to manufacture all its plastic products–including carrier bags, toys and storage boxes – from renewable and/or recycled materials by 2020.Â
Less Energy-Intensive ProductionÂ
If the development of bio-based chemicals is being driven by the idea of sustainability, the same holds true for efforts to harness chemical processes to reduce energy and water consumption. Wastewater management is one area receiving a lot of attention.Â
GE is running a project with Canada’s Southern Ontario Water Consortium to use biological hydrolysis technology to enhance anaerobic digestion to produce not only clean water but also renewable energy and fertilizer. Scientists are on the look-out for ways of producing reactions at room temperature rather than at the very high temperatures and pressures that consume lots of energy.Â
The University of Utah, USA, has developed a process that could replace the energy-intensive Haber-Bosch process used in ammonia production. This is an enzyme-driven fuel cell process, which can generate ammonia at room temperature and produce a small electric current. Another holy grail is an inexpensive way of splitting water to produce hydrogen. Researchers from Cambridge have found a way to extract pure hydrogen from biomass using only alkaline water, sunlight and nanocatalysts. The process takes place at room temperature and is therefore less energy-intensive than traditional ways of converting biomass into hydrogen.Â
More Efficient CatalystsÂ
This brings us to catalysis, an area, which is currently receiving lots of attention, as scientists vie to find quicker, more efficient catalysts using less rare and expensive metals. The pace of innovation is so fast that scientists can hardly keep up. A major challenge is to find alternatives to the more expensive metals such as palladium, platinum, ruthenium and iridium.Â
Instead, scientists are looking to the likes of iron, nickel or copper, or are trying to dispense with metals altogether. Nickel is especially sought after as it has similar properties to palladium and platinum. In 2016 scientists at Missouri University of Science and Technology demonstrated a new nickel selenide catalyst for more efficient water splitting. At the Federal Institute of Technology in Lausanne, scientists are working on a complex based on a nickel ion. One such catalyst is already available and others are being developed. More recently, a nickel catalyst was developed that converts the tough lignin from the grass Miscanthus into phenolic compounds that can be used in flavor or fragrance chemistry.Â
However, these developments do not mean that traditional metals are on the way out. Scientists at Yale have developed a technology for reducing the amount of palladium required in a process, and a way has been found to use platinum catalysts to produce hydrogen. In short, there are more than enough technological challenges for the chemical industry to produce more energy efficient and with higher conversion rates.Â